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Summary. Regulation of passive potassium ion trans- 
port  by the external calcium concentration and tem- 
perature was studied on cell cultures of 3T3 mouse 
cells and their DNA-virus  transformed derivatives. 
Upon lowering of external calcium concentration, 
passive potassium efflux generally exhibits a sharp 
increase at about  0.1 raM. The fraction of calcium- 
regulated potassium efflux is largely independent of 
temperature in the cases of  the transformed cells, but 
shows a sharp increase for 3T3 cells upon increasing 
temperature above 32 ~ In the same range of tem- 
perature, the 3T3 cells exhibit the phenomenon of 
high-temperature inactivation of the residual potassi- 
um efflux at 1 mM external calcium. At comparable 
cellular growth densities, the transformed celt lines 
do not show high-temperature inactivation of "resid- 
ua l"  potassium efflux. These results are consistent 
with the notion of a decisive role of the internal 
K + concentration in the cell-density dependent regu- 
lation of cell proliferation. In particular, the growth- 
inhibiting effect of  lowering the external Ca 2 + con- 
centrations is considered as largely due to a rise of 
passive K + efflux and a subsequent decrease of inter- 
nal K + concentration. The experimental data on the 
Ca 2 + dependence of passive K + flux are quantitative- 
ly described by a theoretical model based on the con- 
stant field relations including negative surface charges 
on the external face of  the membrane,  which coopera- 
tively bind Ca 2 + ions and may concomitantly under- 
go a lateral redistribution. The present evidence is 
consistent with acidic phospholipids as representing 
these negative surface charges. 

+ This work is dedicated to the memory of Max Delbrtick (de- 
ceased March 10, 1981), in whose laboratory in 1966 the earlier 
version of the present theoretical model was developed by one of 
the authors. 
* P r e s e n t  address." Max Planck Institut ffir Immunbiologie, Sttibe- 
weg 51, 13-7800 Freiburg (FRG). 
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Primary processes in the chain of events leading to 
stimulation or inhibition of cell proliferation by exter- 
nal agents or cellular growth density are occurring 
in the plasma membrane.  Since the pioneering study 
of Lubin (1967) a large number  of investigations have 
provided ample evidence that transport  of monova-  
lent cations plays a major  role in regulation of cell 
proliferation. The cells studied most  completely in 
this regard are mouse 3T3 cells. Sutherland (1972) 
has formulated four criteria, which in a first survey 
have to be met as a necessary condition if a substance 
is to be considered a second messenger in humoral  
regulation. These criteria of Sutherland are a conve- 
nient basis for a discussion of a possible role of the 
intracellular K + concentration as a second messenger 
in growth regulation. In fact, putting together the 
results on active K + transport  (Elligsen, Thompson,  
Frey & Kruuv, 1974; Kasarov & Friedman, 1974; 
Rosengurt  & Heppel, 1975; Kimelberg & Mayhew, 
1975, 1976; Banerjee & Bosmann, 1976; Bourne & 
Rosengurt, 1976; Spaggiare, Wallach & Tupper,  
1976; Tupper, Zorgniotti  & Mills, 1977), as well as 
on passive K + transport  and on intracellular K + con- 
tent of normal and transformed cells (Cone & Ton- 
gier, 1974; Rosengurt & Heppel, 1975; Pollack & 
Fisher, 1976; Ernst & Adam, 1978, 1979; Adam, 
Ernst & Seher, 1979; Ledbetter & Lubin, 1979), evi- 
dence may be presented complying with all four cri- 
teria of  Sutherland, if formulated for the intracellular 
K + concentration as a second messenger with regard 
to cell-density dependent growth regulation (for a dis- 
cussion of much of the evidence s e e  Adam et al., 
1979). Apparently, this conclusion cannot be extended 
to the situation of growth inhibition by serum defi- 
ciency (Tupper & Zografos, 1978). 
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A possible role of intracellular K + concentration 
and/or K § transport in growth regulation is also indi- 
cated by results on a large number of other cell types : 
sarcoma 180 cells (Lubin, 1967), lymphocytes (Kap- 
lan, 1977), Girardi cells (Lamb & McCall, 1972), baby 
hamster kidney (BHK) cells (McDonald, Sachs, 
Orr & Ebert, 1972), L-cells (Quissel & Suttie, 1973), 
mouse lymphoblasts (Shank & Smith, 1976), and hu- 
man fibroblasts (Ledbetter & Lubin, 1977, 1979). 

More recent work has pointed to a specific role 
of Na § transport in hormone- or serum-dependent 
growth stimulation of quiescent 3T3 and other cells 
(Smith & Rosengurt, 1978a, b; Adam et al., 1979; 
Koch & Leffert, 1979; Rosengurt, Legg & Pettican, 
1979). 

On the other hand, the external Ca 2 § concentra- 
tion has been shown to affect specifically the growth 
behavior of 3T3 cells (Balk, 1971 ; Dulbecco & Elk- 
ington, 1975; Boynton & Whitfield, 1976a, b; Rubin, 
Terasaki & Sanui, 1978, 1979; van der Bosch, Som- 
mer, Maier & Rahmig, 1979; Paul & Ristow, 1979) 
and other cell types (Whitfield, Rixon, Perris & You- 
dale, 1969; Balk, Whitfield, Youdale & Braun, 1973; 
Frank, 1973; Rixon & Whitfield, 1976; Swierenga, 
MacManus & Whitfield, 1976; Whitfield, MacMan- 
us, Rixon, Boynton, Youdale& Swierenga, 1976; 
Boynton, Whitfield, Isaacs & Tremblay, 1977; Rubin 
et al., 1978; Balk, Polimeni, Hoon, LeStourgeon & 
Mitchell, 1979; Hazelton, Mitchell & Tupper, 1979). 
Furthermore, the content, distribution, transport and 
exchange of Ca 2 § in normal and transformed 3T3 
mouse cells shows specific features which are consis- 
tent with a membrane-related function of surface- 
membrane localized Ca 2+ in cell-density dependent 
regulation of growth (Tupper & Zorgniotti, 1977; 
Tupper, Del Rosso, Hazelton & Zorgniotti, 1978; 
Vannucci, Del Rosso, Cella, Urbano & Chiarugi, 
1978; Hazelton & Tupper, 1979; Sanui & Rubin, 
1979). 

A possible link between the effects of external 
Ca 2 + concentration and K + transport on cell prolifer- 
ation is suggested by experimental results indicating 
that external Ca 2+ ions are intrinsically connected 
with the mechanism of regulation of (passive) mono- 
valent cation transport. It has been shown for squid 
axon (Hodgkin & Keynes, 1957), frog skin (Curran, 
Herrera & Flanigan, 1963), liver cells and salivary 
gland cells (Loewenstein, 1967), kidney cortex (Klein- 
zeller, Knotkova & Nedvidkova, 1968), liver (Geyer, 
Sholtz & Bowie, 1955; Kalant & Hickie, 1968; Gil- 
bert, 1972; Kolb & Adam, 1976), and other tissue 
cells (Morril, Kaback & Robbins, 1964) that incuba- 
tion in a calcium-free balanced salt solution leads 
to a decrease of the concentration gradients of alkali 
ions across the cell membrane and/or membrane po- 
tential. For  isolated rat-liver cells the dependence of 

passive K + permeability on external C a  2 + concentra- 
tion and temperature has been investigated in consid- 
erable detail (Kolb & Adam, 1976), exhibiting a fairly 
sharp decrease with increasing external Ca 2 + concen- 
tration at about 10-4 u if temperature is at or above 
37 ~ 

As the dependence of cell proliferation on external 
Ca 2 + concentration and on K + transport has been 
studied most closely for 3T3 cells and their trans- 
formed derivatives, it appeared most fruitful to study 
the relation between external Ca 2 + concentration and 
passive K + transport on normal and transformed 3T3 
cells in a detail comparable to the study on liver 
cells (Kolb & Adam, 1976). Such an analysis as shown 
in the following does not only give valuable insights 
into the mechanism(s) of Ca 2 +-dependent growth reg- 
ulation of normal cells, but also is of considerable 
interest with regard to different Ca2+-dependent 
growth characteristics for transformed cells (van der 
Bosch et al., 1979). In particular, the validity and 
possible generalization of the proposal of Gilbert 
(1972) of a higher affinity of receptor sites in the 
membrane of transformed cells compared to normal 
as determining their different dependence of cellular 
K + content on external C a  2+ concentration could 
be checked and answered negatively. 

Furthermore, this investigation contributes to elu- 
cidation of the basic mechanism(s) of regulation of 
passive K + transport by external Ca z + concentration 
in mammalian cells, as it yields very steep Ca 2 + char- 
acteristics as in the case of liver cells (Kolb & Adam, 
1976), which suggest a regulation mechanism involv- 
ing a cooperative binding of Ca 2 + in the membrane 
and concomitant lateral redistribution of its (negative- 
ly) charged constituents. 

Materials and Methods 

Ceil Preparations 

Stocks of Swiss 3T3, Polyoma-3T3 (PY-3T3), and SV40-3T3 
(line 101) cells were kindly supplied by Prof. M.M. Burger, Basel. 
Cells were maintained antibiotic-free at 37 ~ on 95 mm plastic 
tissue-culture plates (Greiner, Nuertingen) in Dulbecco's modifica- 
tion of Eagle medium supplemented with 10% heat-inactivated 
newborn-calf serum in a moist atmosphere containing 10% carbon 
dioxide. Media and supplements were obtained from Flow Labora- 
tories, Bonn. 

Cells were seeded at a density of 1 3 x 103 cm -2 and the stem 
cultures passaged every 4 days. Growth medium was changed three 
times weekly. Measurements were made only 24 hr at least after 
a change of growth medium. Final cell densities of the cell lines 
used were 2-3 x 10 ~ cm -z for SV40-3T3, 1 2 • 105 cm -z  for PY- 
3T3, and 2-4 x 104 em 2 for 3T3 ceils. 

Measurement of Cell Smface Area 

Cell surface areas were determined essentially as described by Seher 
and Adam (1978). Briefly, micrographs of cells still attached to 
the petri plate but with the growth medium replaced by tris-buf- 
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fered Earle's solution (in raM: ll6NaC1, 5.4 KC1, 0.9 NaHzPOr 
.H20, 5.1 glucose, 0.14phenol red, 20Tris-HC1, pH 7.4) were 
taken at different cell densities using a Zeiss microscope IM35 
with phase contrast optics at a total magnification of 800 • Outline 
areas of the cells were determined with a mechanical planimeter 
and calibrated using micrographs of the grid of a Neubauer hemo- 
cytometer. The cell-outline areas of 10-40 micrographs of different 
cells were determined for each independent preparation (petri 
plate). Cell-surface area was evaluated as twice the outline area. 
As checked by determination of cell heights using the micrometer 
of fine focus adjustment, while observing cells grown on glass 
microscope coverslips under differential interference contrast (No- 
marski optics), contributions to cell-surface area arising from the 
vertical dimensions of the cells amount to only 5-15% (Seher & 
Adam, 1978; and in preparation) and can be neglected for the 
purposes of the present paper, in particular as the cell-surface 
areas turned out to be independent of Ca 2 + concentration and 
cell growth density. 

Measurement of Passive Potassium Efflux 

In order to minimally perturb the physiological state of the cells 
growing on the culture substrate and in view of its considerable 
expediency for the large number of flux determinations involved, 
potassium transport was measured with ion-specific electrodes, re- 
cording K + activity directly above the cells during incubation with 
a modified Ringer's solution containing 0.1 mM K + (Adam et al., 
1979). Low external potassium concentration in the incubation 
medium served two purposes: i) to provide for an electrochemical 
gradient of potassium across the cell membrane leading to net 
K* efflux, and ii) to practically eliminate active potassium influx. 
Inactivation of active K + influx at external K + concentration of 
about 0.I mM has previously been demonstrated for the same cell 
types (Rosengurt & Heppel, 1975). 

For an efflux experiment, growth medium was removed from 
the petri plate, and the cell sheet rinsed twice with 5 ml of modified 
Ringer's solution (MRS) used for measurement (144 mM NaCt, 
0.1 m~a KCI, 10 mM triethanoIamine, CaCI2 concentration adjusted 
as required, pH 7.4). Thereafter, the cell sheet, remaining on the 
petri plate, was incubated with 10 ml MRS and the potassium 
efflux from the cells recorded continuously with an ion-specific 
electrode (Philips model IS 561 K, Philips Elektronik-Industrie. 
Hamburg), containing a sensing membrane dotted with vaIinomy- 
cin. The reference electrode (double junction, model 90-02, Orion 
Research, Cambridge, Mass.) was connected to the measuring solu- 
tion by a reference salt bridge (model 563853 from Beckmann 
Instruments, Muenchen) filled with 10% CsCI solution, thereby 
preventing any leakage of potassium from the reference electrode 
to the incubation solution. The electrodes were connected to a 
lnillivoltmeter with high input impedance (model E500 from Me- 
trohm, Herisau, Switzerland ; or model 640 from Knick, W. Berlin) 
and the observed potential difference recorded with a potentiometer 
recorder (model Servogor RE571, Goerz-Electro, Wien). The petri 
plate was thermostated during incubation in an aluminum block, 
the whole assembly including electrodes being agitated at about 
15 cycles/rain and maximum inclination of two degrees on a ~ ra -  
tory moving table (model Reax 3 from Heidolph, Kelheim). 

Potassium efflux q5 K in pmol cm- 2 sec-t was evaluated from 
the initial slope (dE/d 0 of recorded difference E of the electrical 
potential between potassium electrode and reference electrode ver- 
sus time t using the relation (Cammann, 1973): 

2.303 (JC~ 
K=SAN VK'~"\,II ], o (1) 

where V=10ml is the extracellular volume, Keo=0.1 mM is the 
initial K + concentration of the incubation solution, A is the ceil- 
surface area (determined as described above), N is the number 

of cells per plate and was determined by electrical counting (model 
ZF, Coulter Electronics, Krefeld) after release of the cells from 
the plate in Ca-free MRS with 0.25% trypsin, this procedure fol- 
lowing each experiment. The response characteristics S of the elec- 
trode assembly may be expressed in mV/log(Ke~/K~o). This quantity 
S was determined by calibration at Keo=0.1 mM and K~I =0.5 or 
1.0 mM in MRS under the same conditions before and after each 
experimental recording, and at 25 ~ was in the range of 52 to 
59 inV. The response of the electrode assembly proved to be very 
reproducible and fast (response time ~ I-2 rain). As was obvious 
from the calibration runs for determination of S, any efflux of 
Cs + from the salt bridge turned out to be negligible as, in fact, 
could be shown even for a salt bridge filled with KC1. 

By incubation for various intervals in the absence of the potas- 
sium electrode and comparison with the result of continuous pres- 
ence of the electrode, we have ascertained that any effect on the 
results of leakage of valinomycin from the potassium electrode 
can be excluded. 

As an additional corroboration to earlier results on inactiva- 
tion of active K + uptake of 3T3 cells (Rosengurt & Heppel, 1975) 
and other ceils (Garrahan & Glyun, 1967; Ducouret-Prigent, Le- 
lievre, Paraf & Kepes, 1975) under the conditions of the present 
experiments (Ke~0.1 mM), we have measured K+-effluxes after 
preincubation of 3T3 or SV40-3T3 cells for l0 or 30 min at 37 ~ 
in Ringer's solutions containing 5-150mMK + with or without 
1-3 II1g ouabain, and within an experimental error of 10 15% 
for individual measurements could not detect any difference in 
the subsequent K + efflux into MRS with or without 1 3 mM oua- 
bain, respectively. 

Temperatures were accurate within +0.5 ~ as determined 
by Ptl00 resistance thermometer. 

Further details on the method of K+-efflux experiments with 
ion-specific electrodes are given by Adam et al. (1979). 

K+-efflux measurements for each temperature were all done 
from one seeding on one day, each Ca a+ concentration being 
measured in triplicate, i.e. by three independent recordings from 
a separate cell preparation (petri dish) each. Results on efflux 
measurements are given as the arithmetic mean _+ standard error 
of the mean. 

Results 

Growth Parameters and Cell Smfaee  Area 

As s h o w n  in o u r  ear l ie r  w o r k  ( A d a m  et  al., 1979), 

pass ive  K + ef f luxes  o f  3T3 a n d  SV40-3T3 cells  d e p e n d  

m a r k e d l y  on  cell  g r o w t h  dens i ty .  By a spec i f i ed  

g r o w t h  p r o c e d u r e ,  we  have ,  t h e r e f o r e ,  a d j u s t e d  cell  

dens i t i e s  to p r e s c r i b e d  f igures  as c lose ly  as p rac t i -  

cable .  F o r  3T3 cells,  we used  a cell  d e n s i t y  o f  (3.5 

_+0.4 SD) X 104 cm 2 fo r  PY -3 T 3  cells o f  (8.2 

_+ 1.1 SD) x 104 cnl  2, a n d  f o r  SV40-3T3 cells o f  

(5.2_+0.7 SD)• 10 ~ cm -2 .  T h e  f igure  fo r  3T3 cells  is 

n e a r  s a t u r a t i o n  d e n s i t y  o f  the  cell m o n o l a y e r ,  a n d  

fo r  the  t r a n s f o r m e d  cells at  leas t  a p p r o x i m a t e  a m o n o -  

layer  c o v e r i n g  the  cu l t u r e  pla te .  

Cel l  s u r f ace  a reas  d e t e r m i n e d  a c c o r d i n g  to  the  

procedure outlined under Materials and Methods are 
given in Table 1. It is found that the cell-surface area 
of PY-3T3 cells is less than half of the cell-surface 
area of 3T3 cells. This confirms for another trans- 
formed derivative of 3T3 cells a finding made earlier 
for SV40-3T3 cells (Seher & Adam, 1978). 
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Table 1. Ceil growth densities.+_standard deviation and average cell surface areas _+ standard error 
of the mean (number of  independent preparations in parentheses) for the cell lines investigated 

Cell line 3T3 PY-3T3 SV40-3T3 

Average cell density 
N/104cm-2_+SD 3.5 +0.4 8.2 _+1.1 5.2 +0.7 
Cell smface area 
A/10-Scm2+sEM 4.53+0.14 (43) ~ 1.92+--0.07 (9) 1.68+0.06 (9) ~ 

Taken from Seher and Adam (1978). 

Table 2. Arrhenius parameters describing temperature dependence of basic passive K + efflux qS~: 
(at C a , =  1 raM) and of the extent A ~b ~ of Ca 2 +-dependent passive K + efflux, using Eqs. (2) and 
(5), respectively 

A~ E~ A~  E~162 
Cell line l~  cm - ~ sec - ~ kJ mol - ~ log pmol cm ~ sec - ~ kJ mol - 

3T3 10.7 59 13.8 77 
PY-3T3 9.4 49 9.1 48 
SV40-3T3 9.4 51 12.4 69 

pmol cm4s "~ ! 10 d ~  
3 I -- 

I 
i 

pmol cm-2s -~ 

1G 

3 ~ ~ - - ~  

1 
3.20 3.25 3.30 3.35 

T-If I0-3~K-I 
Fig. 1. Components  of K + efflux versus reciprocal temperature 
for 3T3 (o), PY-3T3 (e),  and SV40-3T3 cells (A). Upper part. 
Extent dqb ~ of K + efflux which is regulated by external Ca 2+ 
concentration. This quantity A 4~ ~ was obtained from the fit of  
Eqs. (3) and (4) to the data given in Fig. 2 4 .  Lower part." Basic 
K + effiux 0k at 1 mM external Ca 2+ concentration (error bars 
indicate standard error of  the mean from three independent experi- 
ments). Broken curves indicate fit of  the Arrhenius relations Eqs. 
(2) and (5) for T < 3 9  ~ (transformed cell lines) and T < 3 2 ~  
(3T3 cells) ; parameters of the fit are given in Table 2 

Temperature Dependence of Passive K + Flux 
at C a e = l  mM 

The dependence on temperature of passive K + fluxes 
at an external Ca 2+ concentration of Cae= l  mM is 

given in Fig. 1, lower part. As is evident from this 
Figure (broken lines), the logarithm of K + efflux of 
the transformed cell lines at temperatures T < 3 7  ~ 
within experimental error depends linearily on recip- 
rocal temperature. An activation energy of about 
E ~ 5 0 k J m o l  - t  and a pre-exponential factor of 
about log (A~/pmol cm-  2 sec- 1) = 9.4 has been evalu- 
ated for the transformed cell lines at T<3'7 ~ (see 
Table 2) using the Arrhenius relation: 

1 1 q~K=A~ exp {-E~/RT}.  (2) 

At temperatures T>3 9  ~ there are deviations from 
this relation for t ransformed cells which appear to 
transcend experimental error but nevertheless are fair- 
ly small. 

In contrast, 3T3 cells exhibit an N-shaped curve 
in its dependence of log q~*K on l/T, which only at 
T <  29 ~ yields a slope E~= 59 kJ mol -  1 comparable 
to that of transformed cells (Table 2). The N-shaped 
temperature characteristic for 3T3 cells was referred 
to in our earlier report as "high-temperature inactiva- 
t ion" of passive K + efflux (Ernst & Adam, 1978). 
This interesting phenomenon could be shown to be 
even more pronounced at lower cell growth densities, 
and at low cell growth densities it has been found 
to apply for SV40-3T3 cells also (Adam et al., 1979). 
High-temperature inactivation of passive fluxes is a 
characteristic opposite to that of low-temperature in- 
activation, as observed for active K § influx of 3T3 
and SV40-3T3 cells (Kimelberg & Mayhew, 1975), for 
(Na+K)-act ivated ATPase (Priestland & Whittam, 
1972; Kimelberg & Papahadjopoulos, 1972, 1974; 
Grisham &Barnett ,  1973; Kimelberg, 1977) or for 
sugar transport into bacterial cells (Schairer & Over- 
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Fig. 2. Ca2*-regulated component A~b~=~bK ~b 1 of K* efflux (PK 
versus external Ca ~ + concentration (on Iogarithmic scale) for 3T3 
cells at different temperatures. Error bars indicate standard error 
of the mean from three independent experiments. Curves are com- 
puted from Eqs, (3) and (4) using figures w/kT, Q and A ~o as 
shown in Fig. 5 
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Fig. 3. Ca/ +-regulated component d ,;bK=<~K--<;b~: of K + efflux 4)K 
versus external Ca 2 + concentration (on logarithmic scale) for PY- 
3T3 cells at different temperatures. Error bars indicate standard 
error of the mean from three independent experiments. Curves 
are computed from Eqs, (3) and (4) using figures w/kT, Q and 
d 0 ~ as shown in Fig. 5 

ath, 1969 ; Overath, Schairer & Stoffel, 1970 ; Wilson, 
Rose& Fox, 1970; Esfahani, Limbrick, Knutton, 
Oka & Wakil, 1972; Tr/iuble & Overrath, 1973 ; Lin- 
den, Wright, McConnell & Fox, 1973; Thilo, Trfiu- 
ble & Overath, 1977). 

Ca 2 +-Dependence of Passive K + Flux 
at Different Temperatures 

A t  f ixed t e m p e r a t u r e ,  pass ive  K + ef f lux  o f  all  cell  

l ines s tud ied  he re  decreases  m o n o t o n o u s l y  if  the  ex te r -  

na l  C a  2 + c o n c e n t r a t i o n  Cae is ra ised,  and  e v e n t u a l l y  

reaches  a l o w e r  p l a t e a u  at  o r  n e a r  C a e = l  mM. In  

o r d e r  to  a r r ive  at a c lea r  p r e s e n t a t i o n  o f  the  c o n s i d e r -  

ab le  n u m b e r  o f  e x p e r i m e n t a l  d a t a  on the  d e p e n d e n c e  

o f  pass ive  K + e f f lux  on  Cae and  T, we h a v e  p lo t t ed  

in Figs .  2 t h r o u g h  4 the  d i f f e rence  A 4 K =  ~bK--~b~: o f  

the  C a + - d e p e n d e n t  K + e f f lux  qSK and  its l o w e r  p l a t e a u  

qSff, w h i c h  in m o s t  cases  is g iven  by  ~b~, i.e. by  the  

K + ef f lux  at  C a ~ = l  m e ,  as s h o w n  in Fig .  1. O n l y  

for  the  f igures  A qSK o f  SV40-3T3  cells at  and  b e l o w  
35 ~ as g iven  in F ig .  4, we h a v e  used ~b~ s l ight ly  

l ower  than  ~b~c, as t ha t  cha r ac t e r i z e s  the  l o w e r  p l a t e a u  

m o r e  c lose ly  (see Fig.  4, l o w e r  curves) .  

T h e  gene ra l  cha rac te r i s t i c s  o f  r e g u l a t i o n  o f  pass ive  

K + t r a n s p o r t  o f  all the  cell  l ines i nves t i ga t ed  here  

12[ 
4ooc 

8 

z, k ,,.+..__._+ 

,2 ;; 

o , 

37Oc 

0 , , " " - -~ ,~ 
6 4 - + ' ~  35~ 
2 

4 - ~ ] , ~ +  32Oc 
2 
0 ~ '~ ' ' " - -  ~ 
2 - + - - + ~ + ~ +  25~ 
0 i p ""'---- 4 - -  

-5 -4 -3 

log (CadM) 
Fig. 4. Ca 2 +-regulated component d OK = qSK-- qS~- of K + efflux ~bK 
versus external Ca 2 + concentration for SV40 3T3 cells at different 
temperatures. Error bars indicate standard error of the mean from 
three independent experiments. Curves are computed from Eqs. 
(3) and (4) using figures w/kT, Q, and A ~b ~ as given in Fig. 5 
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resemble each other: a lower plateau at about Cae > 
1 raM, a more or less steep rise at about Cae=0.1 mM 
to a higher plateau, which is attained at about Cae = 
0.1 mM to a higher plateau, which is attained at about 
Cae= 10 5 M. With rising temperature, the difference 
between low and high Ca 2 + plateaus of K + flux in- 
creases markedly. All these features are very similar, 
albeit not the same in every quantitative detail, as 
observed for isolated rat liver cells (Kolb & Adam, 
1976). 

Any quantitative discussion of the .considerable 
amount of data contained in Figs. 2.4 requires some 
data reduction. The fairly steep characteristics of de- 
pendence of q~K on Cae (Figs. 2-4), similar to those 
observed for isolated liver cells (Kolb & Adam, 1976), 
strongly suggest a cooperative change of the physical 
state of the membrane upon variation of external 
Ca 2+ concentration. We shall, therefore, use for 
quantitative description a theoretical formulation giv- 
en previously (Adam, 1967, 1968, 1973), which is 
based on a cooperative cation-binding in a two-di- 
mensional lattice of subunits in the plasma mem- 
brane. At the present stage of our argument, this 
theoretical description is intended only as a pheno- 
menological compilation of the data, allowing for 
convenient extrapolation or interpolation. In the Ap- 
pendix we have given a detailed molecular model de- 
scribing the Ca2+-dependent regulation process of 
passive K + transport as due to cooperative binding 
of Ca 2+ to pairs of negative charges. Application 
of this specific model to the experimental data, deriva- 
tion of the molecular parameters of the model and 
their comparison with independent experimental re- 
sults will be deferred to the Discussion section. Here, 
we need only the basic relations. The Ca z +-dependent 
passive K + flux may be approximated as proportional 
to the fraction n of negatively charged binding sites 
on the cell surface, which are not bound by Ca 2 + 
ions (@ Eqs. (AS) and AI3)): 

~ = A # , o .  ,,, (3) 

where AqbK=qSK-qS~', as before, and A ~ ~ 1 7 6  
corresponds to the passive K + flux attained asymptot- 
ically at low external Ca 2 + concentrations. 

The steady state of the two-dimensional coopera- 
tive assembly of Ca2+-binding sites on the external 
face of the plasma membrane in the molecular field 
approximation is given by (cf. Eq. (A9)): 

1 - n e X p / ~ I  =Cae (4) 

where 1 - n  is the fraction of sites occupied by C a  2+ 

ions, whereas n is the fraction of sites not bound 
by Ca z+ ions. Further wG0 is the cooperativity pa- 
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Fig. 5. Parameters-~*,k/T and Q versus reciprocal temperature for 
3T3 (o), PY-3T3 (e),  and SV40-3T3 cells ( , ) .  These parameters 
are evaluated according to Eqs. (3) and (4) of the text from the 
data given in Fig. 2 4 

rameter, Q is a parameter depending on temperature 
and on monovalent cation concentrations, but not 
on the external Ca 2 + concentration Cae. 

Choosing a set of the three parameters A q5 ~ w 
and Q for each temperature investigated, the curves 
given in Figs. 2-4 were calculated. As is evident from 
these Figures, an excellent fit is obtained by the rela- 
tions (3) and (4), describing the experimental data 
fully within their statistical error bounds. The param- 
eters Aq5 ~ w and (2, chosen for each temperature 
are given in Fig. 1, upper part, Fig. 5, upper part, 
and Fig. 5, lower part, respectively. 

The meaning of the parameter A 4) ~ is most obvi- 
ous; it is the maximum extent of regulation of ~bK 
by external Ca 2 + concentration. As is evident from 
Figs. 2-4, A q~o is well approximated by A 4K at Cae = 
10 -s M. 

For  the transformed cell lines, the temperature 
dependence of A q5 ~ at T <  37 ~ within experimental 
error is described by an Arrhenius relation 

el 4 ~ = A~4 , exp { -E~ (5) 

(see Fig. 1, upper part, broken lines). The activation 
energies E~ and pre-exponential factors a~  thus de- 
rived are given in Table 2. At temperatures T>__ 39 ~ 
there are deviations from this relation, which are 
beyond experimental error and are parallel to those 
of q~: from relation (2) used for the temperature de- 
pendence of q~. Similar to the situation encountered 
with regard to qS~c of 3T3 cells, the temperature depen- 
dence of A q~o of 3T3 cells cannot be approximated 
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by a single activation energy E~ but shows indica- 
tions of high-temperature inactivation. Only at tem- 
peratures T < 2 9  ~ the temperature dependence of 
A q5 ~ of 3T3 cells yields an activation energy E~ com- 
parable to that applicable to SV40-3T3 cells over a 
much larger temperature range (see Table 2). 

If  we plot qS~ versus temperature, any tempera- 
ture dependences common to the Ca 2---dependent K + 
efflux A qb ~ and to the basic K + efflux ~b~c will cancel 
each other. Furthermore,  such a reduced plot should 
cancel terms dependent on cell surface area and/or 
intracellular K + content and therefore facilitates com- 
parison of different cell lines. As Fig. 6 shows, the 
flux ratio qS~ of transformed cells indeed turns 
out to be independent of temperature within experi- 
mental error. Interestingly, the flux ratio of ~b~ 
of 3T3 cells exhibits a drastic rise by about 50% 
occurring between 32 ~ and 35 ~ (see Fig. 6), i.e. 
at the temperatures of high-temperature inactivation 
of qS~ (Fig. 1). 

Considering the temperature dependences of the 
parameter  - w / k T  and Q, one observes that large 
figures of - w / k T  generally correspond to low figures 
of  Q, and vice versa (see Fig. 5). An interesting fea- 
ture, which clearly is beyond the uncertainty of the 
experiments and their evaluation, concerns the tem- 
perature dependence of - w / k T  and Q of 3T3 cells. 
At precisely the temperature range of high-tempera- 
ture inactivation of ~b~ and of the drastic step-up 
of ~b~ the "cooperat ivi ty  pa ramete r"  - w / k T  
drops to nearly zero, whereas Q exhibits a maximum. 
In contrast, the transformed cell lines show an essen- 

Table 3. Affinities q of Ca z + binding to membrane surface sites 
regulating passive K + transport at different temperatures evaluated 
from the data given in Fig. 5 using Eq. (6) 

T (~ 
q (m:~) 

25 32 35 37 39 40 

3T3 ~0.07 0.094 0.097 0.067 0.045 0.101 
PY-3T3 ~0.3 0.180 0.149 0.229 0.090 0.124 
$V40-3T3 ~0.2 0.130 0.030 0.099 0.055 0.030 

tially monotonous  dependence of - w / k T  and Q on 
temperature. 

As shown in the Appendix, an intrinsic affinity 
q of the cation-binding sites on the cell surface for 
Ca z+ may be derived f rom Q by elimination of the 
dependence on the cooperativity parameter  -w/kT,  
using : 

Q = q e w/2kr. (6) 

The affinity q is simply characterized by the external 
Ca 2 + concentration yielding half maximal saturation 
of the sites. Table 3 represents the figures for q which, 
according to Eq. (6), are computed from the figures 
on - w / k T  and Q given in Fig. 5. As is evident f rom 
Table 3, the strong dependence of Q on temperature 
(which is opposite to that of - w / k ? ) d o e s  not appear  
for q. Here, the figures of q for T = 2 5  ~ should 
be disregarded, as they are subject to considerable 
error due to the smallness of the corresponding fluxes 
~bK. The averages of q for T >  25 ~ calculated from 
Table 3 for each of the cell lines are: q3r3 =(0.081 _+ 
0.024 SD) raM; qPY-3T3 =(0.154+0.053 SD) raM; and 
qsv4o-3T3 = (0.069 _+ 0.044 SD) mM. 

According to these figures, normal and trans- 
formed cell lines cannot be distinguished with regard 
to their affinities q for Ca 2 + binding to ~bK-regulating 
surface sites. 

Discuss ion  and Theoret ica l  M o d e l  

Significance of the Parameters A 0 ~ w/kT, and Q 

Since the primary experimental data were evaluated 
and will be discussed in terms of the parameters A ~b ~ 
w/kT, and Q, we wish to discuss first the significance 
of this data reduction. The experimental procedure 
was such as to perform the measurements for one 
temperature on one day using parallel preparations 
for each of the 5 to 6 Ca 2 + concentrations done in 
triplicate. Thus, measurements at different tempera- 
tures were made on different days, i.e. in principle 
on different preparations which, however, were 
matched as far as practicable with regard to growth 
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procedure and cell density. Nevertheless, the variation 
between preparations used for different temperatures 
may be expected to be the major source of error. 
In comparison, the error resulting from the fit of 
relations (3) and (4) to the experimental results may 
be assessed more easily, although a simple regression 
analysis does not appear possible. The theoretical 
curves were fitted by trial and error taking into ac- 
count the experimental error of the primary data. 
The uncertainty of the final figures chosen for A qS~, 
w/kT, and Q may be estimated by this procedure 
as being mostly within _+ 10%, in few cases within 
_+20%. Only for the temperatures showing small 
fluxes A ~b ~ i.e. for 25 ~ and to a lesser extent for 
32 ~ is the error in the choice of these parameters 
considerably larger, in particular with regard to pa- 
rameter Q. As is evident from the earlier sections 
and also from the following discussion of the results 
in terms of the theoretical model, there are striking 
correlations between different experiments and differ- 
ent aspects of the experiments, which are beyond these 
error bounds of the experiments and their evaluation, 
indicating that the data on A (o ~ w/kT, and Q may 
form a useful basis for discussion of the experimental 
results. 

Correlation of the Effects of  Car or T on Passive 
K + Fluxes with Those on Cell Proliferation 

It has been observed consistently that normal cells 
do not proliferate at low external Ca 2+ concentra- 
tions, but that transformed cells have a much lower 
Ca 2 + requirement allowing for proliferation at very 
low levels of Cae < 10 -4 M (references given in the 
Introduction). As to possible mechanisms of Ca- 
bound regulation of proliferation, some authors have 
suggested specific interactions between Ca and the 
metabolism of cyclic AMP including some redistribu- 
tion of intracellular Ca pools (Boynton & Whitfield, 
1976a, b; Boynton et al., 1977). More recently, fairly 
detailed evidence has been put forward attributing 
to calcium only an indirect role in growth control, 
whereas magnesium was concluded to be involved 
in processes more proximal to the intracellular events 
of cell replication (McKeehan & Ham, 1978; Rubin 
et al., 1978, 1979; Bowen-Pope, Vidair, Sanui & Ru- 
bin, 1979). 

In addition to this intracellular role of Mg in regu- 
lation of proliferation, detailed evidence has been ad- 
duced showing that the intracellular K + concentra- 
tion fulfills all criteria which according to the state- 
ments given by Sutherland (1972) may be required 
for a second messenger in the chain of events leading 
to stimulation or inhibition of cell division (see Intro- 
duction). Accordingly, an increase of K + effiux in- 
duced by an external perturbation (such as lowering 
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Fig. 7. Ra t io  of K + efflux 4) ~176 at 10 s M external  Ca 2 ~ concen-  

t ra t ion  to K + efflux ~b~: at  1 mM external  Ca  2 + concen t ra t ion  versus 
cel lular  g rowth  densi ty  D in cm -2 for 3T3 (�9 PY-3T3 (e ) ,  and  
SV40-3T3 cells (at) (present work). Ful l  curves  are the results  t aken  
f rom A d a m  et al. (1979). E r ro r  bars  indica te  s t andard  er ror  of 
the m e a n  at  cell densi ty  3 x 104 cm -2, Tempera tu re  in these experi-  

remits was  (37 +0 .5 )  ~ 

of external Ca 2 + concentration or raising temperature 
from 25 to 39 ~ should lower the intracellular K + 
concentration and thus negatively affect cellular pro- 
liferation, provided the effect on passive K + efflux 
is not compensated by any effect on active K + influx. 
These predictions may be checked using the results 
presented above, together with some data obtained 
in parallel studies (Adam et al., 1979; van der Bosch 
et al., 1979) employing the same stem cultures and 
growth conditions as in the present work. In Fig. 7, 
we have plotted the ratio of passive K + effluxes at 
very low (Ca2+__ < 10 s M) and at physiological (Cae> 
10 .3 M) external Ca 2+ concentrations for different 
cell densities of normal and transformed 3T3 cells. 
This efflux ratio describes the maximum extent of 
stimulation of passive K + efflux with lowering of 
Cae. As is evident, the extent of Ca a +-dependent reg- 
ulation of K + efflux of 3T3 cells increases with cell 
density almost by a factor of three, indicating a strong 
effect of Car on the balance of internal K + concentra- 
tion at saturation densities. This effect is entirely con- 
sistent with the results of the parallel study (van der 
Bosch et al., 1979) showing a substantial depression 
of 3T3 cell proliferation at C a e ~ 4 •  10 -5 M and its 
almost entire suppression at Cae ~ 10 s M. This range 
of Ca 2 § concentrations affecting cell growth coincides 
fully with that affecting K + efftux (see Fig. 2, 37 ~ 
In contrast, the extent of Ca 2 +-dependent regulation 
of K + efflux of transformed cells does not change 
very much with cell density and at cell densities of 
saturation of normal cells is substantially smaller than 
that of normal cells (see Fig. 7). Again this finding 
is consistent with the proposed effect of the balance 
of internal K + concentration on cell proliferation, 



M. Ernst and O. Adam: Ca 2+ Regulation of Passive K" Transport 163 

since the parallel growth study (van der Bosch et al., 
1979) demonstrated almost negligible effects on 
SV40-3T3 cell proliferation of external Ca 2 + concen- 
trations in the range of 10 -s  M__<Cae<2.5x 10 -3 M. 
These results are consistent with an indirect (viz. 
membrane-related) role of the external Ca 2 + concen- 
tration in regulation of cell division of normal cells 
as proposed by Rubin et al. (1978, 1979) and in addi- 
tion give some insight into the specific perturbations 
with regard to the pertinent regulation characteristics 
of transformed cells. Our results are inconsistent with 
the interpretation suggested by Gilbert (1972) of the 
dependence of intracellular K + content of different 
cell types on external Ca 2+ concentration. It was 
found that with lowering of Cae the K + content of 
normal and transformed cells exhibited drastic de- 
crease, which for transformed cells occurred at much 
lower figures of Cae than for hepatocytes (Gilbert, 
1972). His results on hepatocytes have been largely 
confirmed by later work (Kolb & Adam, 1976). Inter- 
pretation of these differences between normal and 
transformed cells as resulting from a higher affinity 
of the plasma membrane of transformed cells for 
binding of Ca (Gilbert, 1972) does not appear conclu- 
sive as the intracellular K + content results from a 
complex balance of passive efflux and active uptake 
of K § ions and thus requires some detailed analysis. 
As the figures of Table 3 indicate clearly, the steep 
rises of K + efflux in fact occur at figures of Cae 
which are very similar for normal and transformed 
cells. 

A further check on the relation between balance 
of intracellular K § concentration and cellular prolif- 
eration is provided by our data on temperature depen- 
dence of K + efflux of 3T3 and SV40-3T3 cells (Fig. 1, 
lower) at physiological Cae. For  both cell lines the 
K + efflux increases by a factor of about two with 
increase of temperature from 35 to 39 ~ Since active 
K + uptake is affected much less (,,~35%) by this 
rise of temperature (Kimelberg & Mayhew, 1975), in- 
tracellular K + concentration may be expected to be 
substantially lower at 39 ~ as compared to 35 ~ As 
this inbalance of intracellular K + concentration re- 
lates to saturation density of 3T3 cells and to about 
confluence of SV40-3T3 cells, it is to be expected 
that according to the role of intracellular K + as a 
second messenger in growth regulation the cell den- 
sity-dependent inhibition of proliferation for both cell 
lines at 39 ~ is more effective than at 35 ~ This 
prediction is fully confirmed by the parallel growth 
study (van der Bosch et al., 1979). 

Thus, the results discussed above give detailed ad- 
ditional evidence supporting suggestions on intracel- 
lular K § content as a second messenger in growth 
regulation based on earlier data (Lubin, 1967; Pol- 
lack & Fisher, 1976; Ledbetter & Lubin, 1977, 1979; 

Adam et al., 1979; Ernst & Adam, 1979). Further 
information on the mode of action of intracellular 
K + concentration in growth control appears to stem 
from observations of protein synthesis in sarcoma 
180 cells (Lubin, 1967) and human fibroblasts (Led- 
better & Lubin, 1977) which is severely inhibited if 
the intracellular K + concentration drops below 60- 
80% of normal, where RNA synthesis is hardly af- 
fected. Analogous conclusions could be drawn for 
3T3, 3T6 and SV40-3T3 cells, the proliferation of 
which is strongly inhibited by low external K + con- 
centration (Pollack & Fisher, 1976). Studies on cell- 
free systems (Schreier & Staehelin, 1973) are in de- 
tailed agreement with these results on cellular systems. 

The sensitivity of growth of both normal and 
transformed cells to lowered intracellular potassium 
according to Pollack and Fisher (1976) and also fol- 
lowing from the temperature dependence of growth 
and K + effiux of 3T3 and SV40-3T3 cells (present 
work; Adam et al., 1979; van der Bosch et al., 1979) 
is of considerable interest. It points to a specific per- 
turbation of regulation of K + transport in trans- 
formed cells by growth density and/or external C a  2 + 

concentration. 
Clearly, the role of K + as an intracellular regula- 

tor of protein synthesis and eventually of cell prolifer- 
ation does not exclude an equally important and/or 
complementary role of intracellular Mg 2+ in protein 
synthesis and growth control (Rubin et al., 1978, 
1979; Schreier & Staehelin, 1973). 

Furthermore, the present data and their interpre- 
tation do not exclude that Ca 2 + ions fulfill important 
and specific functions within the cells. For instance, 
recent work has provided evidence for 3T3 cells on 
a calmodulin-mediated intracellular function of Ca 2 +, 
in particular associated with the mitotic apparatus 
and/or assembly-disassembly of microtubuli (Mar- 
cure, Dedman, Brinkley & Means, 1978; Means & 
Dedman, 1980). In analogy to other systems (Roufo- 
galis, 1980), even a more proximal role of the C a 2 + /  

calmodulin system in the primary chain of events 
of growth regulation may be surmised (Means & Ded- 
man, 1980). 

Thus, although the present data add evidence to 
the suggested role of intracellular K + content as a 
second messenger, the relative importance and the 
specific interrelations of the anorganic cations K +, 
Mg +, and Ca 2 + and the cyclic nucleotides as intracel- 
lular effectors (second messengers) remain to be eluci- 
dated. 

Application of the Theoretical Model 
of Ca 2 +-Dependent Regulation of OK 

In order to apply the theoretical relations derived 
in the Appendix for interpretation of the present ex- 



164 M. Erns t  and G. A d a m :  Ca  2 + Regu la t ion  of Passive K * Transpor t  

Table  4. Average  area per  Ca  2 +-binding site on the external  m e m b r a n e  surface (see text) 

Cell p repa ra t ion  Average  area per CaZ+-b ind ing  site in 10 17 m 2 

Cell type G r o w t h  densi ty  Theoret ica l  mode l "  

25-32 ~ 35-37 ~ 

Direct  Cell e lec t rophores is  ~ 

m e a s u r e m e n t  b < 20 ~ > 30 ~ 

SV40-3T3 0.3 - 2.2 - - 
SV40-3T3 0.4 0.8 - 1.4 - - 
SV40-3T3 5 1.4-1.7 1.4-1.7 - 1.85 1.85 
SV40-3T3 18-24 - 1.25 - - 
3T3 0.3 - 4.1 - 
3T3 0.4 0.8 - - 4.1 
3T3 1.2-1.8 0.4 - - 
3T3 3.5 1.1-1.4 0.6-0.8 2.6 1.85 

a Theore t ica l  mode l  of coopera t ive  Ca z + b ind ing  (present work). 
b C o m p u t e d  f rom exper imenta l  da ta  on sur face-bound  Ca  2+ (Tupper  & Zorgnio t t i ,  1977) and  on surface area 

per cell (Seher & Adam,  1978). 
Der ived  f rom microcel l  e lec t rophore t ic  da ta  on surface charge  densi ty  (Adam & Adam,  1975). 

perimental results, we observe that electrophysiologi- 
cal measurements on the membrane potential of par- 
allel cultures of 3T3 and SV40-3T3 cells did not show 
any difference between 25 and 37 ~ (Adam et al., 
1979). Furthermore, the membrane potential between 
C a e = 1 0  5 M and C a e = 1 0  - 3  M changed only a little 
and for the cell densities used here can be represented 
by V M = - 1 3 . 5 + 6 . 0 m V  for 3T3 cells and by VM= 
-18 .5+_6.0mV for SV40-3T3 cells (Adam et al., 
1979). 

According to the model given in the Appendix, 
the external Ca 2 + concentration regulates q~K through 
binding to the external membrane surface and thus 
modifying the external surface potential Ee. The inter- 
nal surface potential E~ and the intrinsic membrane 
permeability PK for K + are assumed to be negligibly 

2+  dependent on Cae . At any given temperature T the 
ratio of 4~ according to Eqs. (A2) and (A3) de- 
pends only on the reduced potential differences u ~ 
and u S between inner and outer face of the mem- 
brane: 

@~176 ( 1 - e  -u ) /u~ -u ). (7) 

Here, u ~ and u S correspond to very small and very 
high external Ca 2 § concentrations, respectively. 

According to the experimental results on ~b~ 
shown in Fig. 6, the ratio 4~ for transformed cells 
within experimental error is independent of tempera- 
ture. Using Eqs. (7) and (A2), this result suggests 
that the external surface potential E ~ at low Cae is 
independent of temperature. Thus, the temperature 
dependences of ~bff ~ ~b~ and A 4 ~ according to Eqs. 
(A2) and (A3) are essentially given by C and should 
coincide. As is evident from Fig. 1 and from the acti- 
vation parameters given in Table 2 and also from 
Fig. 6, for transformed cells this prediction is borne 

out within experimental error. Using reasonable fig- 
ures of ]Ell < 50 mV, it is seen that the temperature 
dependence of qS~ or A~b ~ within the precision of 
a few percent is given by that of PK. 

For  a more detailed comparison of the model with 
experiments on transformed cells, we use T=3 7  ~ 
VM= - 18.5 mV (Adam et al., 1979) and the tempera- 
ture average q5~ SD (see Fig. 6). Ap- 
plication of Eqs. (A2), (A3), (A6) and (A7) yields 
E ~ largely independent of the figure Ei chosen. If 
Ei varies between 0 and - 3 0  mV, E ~ is obtained 
between - 3 2  and - 2 7  mV, respectively. Using Eq. 
(A13) with E ~  mV, IDol0  -7 cm, e0=8.85 x 
10 -14 CV -1 cm -1 and e=80,  an average surface area 
per Ca2+-binding site, i.e. for a pair of negative 
charges, of 1.51 • 10 -17 m 2 is predicted from K +- 
efflux data on transformed cells. In Table 4, this fig- 
ure is compared with the results of two different types 
of experiments taken from the literature. 

i) The amount of surface-bound Ca was deter- 
mined by Tupper and Zorgniotti (1977). For  SV40- 
3T3 cells with a cell volume of 1521 +86 ~tm 3 they 
found the surface-bound fraction of cell Ca as 
150 pmol/gl cell volume. Using these numbers and 
the surface area per cell (Table 1), we obtain an aver- 
age cell-surface area per Ca2+-binding site of 1.25 x 
10 - 1 7  m 2. 

Somewha t  larger  amoun t s  of  " s u r f a c e - b o u n d  Ca  2 + " were de- 
te rmined  by Sanui  and  Rub in  (1979) using a p rocedure  different  
f rom tha t  of Tupper  and  Zorgn io t t i  (1977). Since in the p rocedure  
of Sanui  and  Rub in  (1979) the cells were washed  wi th  isotonic  
nonelec t ro ly te  so lu t ion  before  release of  Ca  ~ + f rom the surface 
by acidif icat ion,  it may  be expected tha t  the released Ca z+ is 

der ived no t  only  f rom Ca  2+ b o u n d  direct ly  to the negat ive ly  
charged  groups  in the surface, bu t  also f rom Ca 2 + of the Gouy-  
C h a p m a n  interfacial  layer  and,  therefore,  should  be larger  than  
tha t  de te rmined  by the m e t h o d  of  Tupper  and  Zorgn io t t i  (1977) 
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which, after washing with an electrolyte solution, corresponds more 
closely to actually surface-bound Ca 2 + (in the "Stern-layer"). 

it') Cell surface charge density o-o at very low Cae 
was determined directly using micro-cell electrophore- 
sis yielding for SV40-3T3 cells a0 x lD= - 1 . 7 2  • 
10-13 C cm 1 independent of temperature between 
25 and 40 ~ (Adam & Adam, 1975). With a Debye 
length lo=10 -7 cm, we obtain an average area for 
a pair of surface charges of 1.85 x 10 -1~ m 2. 

Obviously, the three independent estimates for the 
average area per Ca 2 +-binding site on the cell surface 
agree well with each other, providing support for the 
validity of the theoretical model. 

For a more detailed application of the theoretical 
model, the surface potential Ei at the inner face of 
the membrane for simplicity is taken as zero. This 
conforms at least qualitatively to the theoretical ex- 
pectation that generally the density of negatively 
charged entities should be smaller on the inner face 
of the membrane than on the outer face (McLaugh- 
lin & Harary,  1974). Then Eqs. (3), (4), (A13) and 
(A14) are applicable and w/kT and Q may be evaluat- 
ed as given in Fig. 5. Using in addition E ~ = - 30 mV, 
as derived before, we obtain from Eq. (A14) : w ' - w  -- 
5.79 kJ mol 1. As - w / k T  of transformed cells is in 
the range between 1.5 and 3.7 if temperature varies 
between 25 and 37 ~ the range of the " intr insic"  
cooperativity parameter - w ' / k T  is between 3.7 and 
6.0. The "intr insic"  cooperativity w' is thus attenuat- 
ed by the contribution of "negat ive"  cooperativity 
resulting from the electrochemical activity of Ca z +. 

The parameter w' is defined as: 

w / = w 0 0 + w l l - 2 w 0 1  (8) 

where w~ 1 is the interaction energy of an empty bind- 
ing site in a lattice/environment of empty binding 
sites, whereas Woo and w01 are the interaction energies 
of a binding site occupied with Ca 2 + in a lattice/ 
environment of occupied and empty binding sites, 
respectively (Guggenheim 1952; Adam, 1970). This 
formulation appears appropriate here as it includes 
interactions of non-nearest neighbors, partly resulting 
from electrostatic energy terms between the charged 
binding sites and between the sites and bound Ca 2 +. 

Turning to application of the theoretical model 
to 3T3 cells, we observe that, in contrast to the situa- 
tion for transformed cells, the extent of the Ca 2+- 
dependent process of regulation of ~bK varies greatly 
with temperature (see Fig. 1, upper, and Fig. 6). This 
temperature- dependent variation of the state of the 
plasma membrane of 3T3 cells is reflected also by 
all other parameters evaluated above: high-tempera- 
ture inactivation of ~b~, minimum and maximum of 
-w/leT and Q, respectively. It is, therefore, appro- 

priate to separately apply the model to different tem- 
perature ranges. 

At T = ( 2 8 + 3 . 5 ) ~  we have 0~ 2.13 _+ 
0.06SD (Fig. 6). Using further V M = - 1 3 . 5  mV 
(Adam et al., 1979) and applying Eqs. (A2), (A3), 
(A6) and (A7), the quantity E ~ turns out to be largely 
independent of the figure of Ei chosen. If Ei varies 
between 0 and - 3 0 m C ,  E ~ is found between - 
42 and - 3 2  mV, respectively. Using again Eq. (A13), 
the average membrane areas per Ca2+-binding site 
turn out to be between 1 .1 0 x l0  -17 m 2 and 1.41x 
10-17 m 2, respectively. 

At T=(36_+1)~ we have qS~ +0.01 SD 
(Fig. 6). Here the same procedure yields E ~ varying 
between - 7 4  and - 5 8  mV, if Ei is chosen between 
0 and - 3 0  mV, respectively. As an estimate for the 
average membrane area per Ca2+-binding site, we 
thus obtain figures between 0 . 6 1 •  2 and 
0.78 x 10 17 m 2, respectively. This density of Ca 2+ 
binding sites for 3T3 cells is 2 to 2.5 times that ob- 
tained before for transformed 3T3 cells. For  compari- 
son, we may use data on the amount  of surface-bound 
Ca 2 + in 3T3 cells, which for a cell volume of 3749 + 
269 nm 3 bind 485 pmol Ca2+/gl cell volume to their 
surface (Tupper & Zorgniotti, 1977). Using these fig- 
ures and a cell-surface area of 3T3 cells as given 
in Table 1, we obtain an average area per Ca 2 +-bind- 
ing site of 0.42 • 10-t7 m 2. This independent method 
thus yields a density of Ca2+-binding sites in the 
surface of 3T3 cells three times higher than that of 
SV40-3T3 cells, again being in reasonable agreement 
with the prediction of our model. 

It is of considerable interest with respect to the 
membrane-bound mechanisms of cell-density depen- 
dent regulation of cell proliferation that the depen- 
dence on temperature of the relative extent 0~ 
of Ca 2 +-regulated passive K + efflux (Fig. 6) is largely 
paralleled by its dependence on cell-growth density 
(Fig. 7) as computed from our earlier results on paral- 
lel cultures (Adam et al., 1979). Actually, in Fig. 7 
the ratio 4~176 is plotted versus cell density, where 
4) ~176 is the passive K + efflux at Cae=-10 s M, which, 
however, according to Figs. 2 4  in good approxima- 
tion may be taken as ~b ~ The striking parallelity 
for normal and transformed cells of the temperature 
dependence and the cell-density dependence of ~b~ 
strongly supports the inference drawn earlier (Adam 
et al., 1979) that with regard to the physical state 
of the plasma membrane increasing cell density is 
equivalent to increasing temperature, i.e. may imply 
increasing "fluidization".  Using V~t = 13.5 mV, Ei = 
- 10mV, 1D= 10-7 cm, e=80,  %=8.85 x 10- 12 CV-1 
m 1 in Eqs. (A2), (A3), (A6) and (AT) as before, 
we wish to apply the theory to decribe the dependence 
of E ~ on cell density of 3T3 cells. At the cell densities 
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3 x 103 cm -2 and 3 x 104 cm -2, the data from Fig. 7 
are ~b~176 and 2.90, giving E ~  and 
- 5 8  mV, respectively. Using again Eq. (A13), we ob- 
tain average areas per Ca2+-binding site of 4.12x 
10 -17 m z and of 0.80x 10 -17 m 2, respectively (see 
Table 4). The figures may be compared with those 
derived from the data of Tupper and Zorgniotti (1977) 
on the dependence of cell density of surface-bound 
Ca 2+ determined directly. At cell densities of expo- 
nential growth (4-8 x 103 cm-2), these authors deter- 
mined the amount of surface-bound Ca 2 + as 65 pmol/ 
gl cell volume, which at these cell densities was given 
as 2718 + 65 pm 3. Using in addition the (density-inde- 
pendent) cell surface area of 3T3 cells (Table 1), we 
obtain an average area per Ca2+-binding site of 
4.08 x 10 -~7 m 2 at low cell density, whereas at satura- 
tion density the data of Tupper and Zorgniotti (1977) 
yield an average area per Ca 2 +-binding site of 0.42 • 
10-17m 2, as discussed before (see Table4). As is 
obvious from these data on the dependence of the 
average membrane area per Ca 2 +-binding site on cell 
density of 3T3 cells, there is a very good agreement 
between the direct measurements of Tupper and Zorg- 
niotti (1977) and the predictions from our model on 
Ca 2 +-dependent regulation of ~bK. For 3T3 cells near 
saturation density, however, the area per pair of nega- 
tive surface charges as derived from microcell electro- 
phoresis data at T>25 ~ (Adam & Adam, 1975) is 
1.85 • 1 0 -  17 m 2, and thus differs considerably from 
the results obtained by the other methods at simi- 
lar growth densities (Table 4). It is of considerable 
interest, though, that upon lowering the temperature 
the surface charge density determined microelectro- 
phoretically decreases by a factor of 1.4, which resem- 
bles the decrease with temperature of o-0 for 3T3 cells 
by a factor of about 1.8, as is evident from the figures 
presented above (cf. Table 4). A similar temperature 
dependence is absent in the case of SV40-3T3 both 
for the microcell electrophoretic data (Adam& 
Adam, 1975) and for the data derived above from 
application of the theoretical model to the experimen- 
tal results shown in Fig. 6. Furthermore, the indepen- 
dence of surface-bound Ca 2 + of cell growth density 
of SV40-3T3 ceils (Tupper & Zorgniotti, 1977) is in 
a striking agreement with E~ ~ of SV40-3T3 cells being 
largely independent of cell growth density as follows 
from the insignificant dependence of qS~176 on cell 
density (Fig. 7). 

For a more detailed application of the theoretical 
model to experimental data on 0~: of 3T3 cells, it 
is convenient to specify the surface potential at the 
inner face of the membrane, and we shall use for 
3T3 cells El= -- 10 mV. This choice conforms at least 
qualitatively to the theoretical expectation for equilib- 
rium distribution of negatively charged entities be- 

tween inner and outer face of the membrane (Mac- 
Laughlin & Harary, 1974) and does not appear to 
be unduly restrictive as it was shown above that the 
parameter Ee ~ is very insensitive for El. With this 
choice, Eqs. (3), (4), (A13) and (A14) may be applied 
to derive w/kT and Q as shown in Fig. 5. Using this 
linear approximation in the case T=(28.5+3.5)~  
with ~b~ we obtain from Eq. (A17) E ~  
- 3 2  mV in reasonable agreement with the figures 
derived above using Eqs. (6) and (7) directly. Apply- 
ing Eq. (A14) with -w/kT=3 (Fig. 5), we may thus 
evaluate the "intrinsic' '  cooperativity parameter as 
w'=(13.7 kJ tool -1, which is in the range found for 
transformed cells. This intrinsic cooperativity param- 
eter reflects molecular interactions of vacant and oc- 
cupied Ca2+-binding sites, as discussed before, and 
may, therefore, be assumed to be independent of the 
state of the membrane, e.g. independent of lipid com- 
position and/or temperature. Since at T=(36_+ 1)~ 
a surface potential E ~  mV is derived by the 
procedure given above, the cooperativity parameter 
- w / k T  may be calculated using Eq. (A14) and is 
found to be -w/kT=0.22. This is in striking quanti- 
tative agreement with the drastic decrease of - w / k T  
for 3T3 cells between 32 and 35 ~ as given in Fig. 5, 
upper. Even the increase of - w / k T  between 37 and 
39 ~ can be accounted for at least qualitatively: at 
T=  (39.5 + 0.5) ~ we have 4~~ = 2.9, which accord- 
ing to Eq. (AlT) yields E~  - 5 7  mV and according 
to Eq. (A14)with w ' = - 1 3 . 7  kJ mo1-1 results in w/ 
kT= - 1.04. 

The application of the theoretical model of Ca z +- 
dependent regulation of OK to the present experimen- 
tal data, thus gives a very reasonable and detailed 
description and furthermore yields a considerable 
number of correlations between different aspects of 
the experimental data providing for some trenchant 
checks on internal consistence of the model. 

Molecular Constituents of the Ceil Membrane 
with Regard to Regulation of ~K 

According to our model, Ca 2 + binding was assumed 
to affect passive K + transport via a change of external 
surface potential but not via a change of the intrinsic 
permeabilities PK of the entities effecting the actual 
transit of the K + ions through the membranes. There- 
fore, the temperature dependence of passive K + trans- 
port in the case of transformed cells could be attrib- 
uted in the essence to that of PK. It is of interest 
to compare the Arrhenius parameters describing this 
temperature dependence (Table 2) with those of pore- 
forming antibiotics in artificial lipid bilayer mem- 
branes. The activation energy of the single-channel 
conductance for Cs + transport through monazomycin 
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channels in a diphytanoylleci thin bilayer was found 
to be about  42 kJ tool t (Bamber  & Janko,  1976), 
whereas that  of  N a  + ions through the gramicidin 
channel  in dioleoyllecithin bilayer membrane  was 
found to be 31 kJ tool -*  (Bamberg & Lfiuger, 1974). 
These figures compare  well with those of  E~ and E~ 
between 48 and 69 kJ mol  * for t ransformed cells 
(Table 2). For  3T3 cells, activation energies of  passive 
K + efflux o f  this order  of  magni tude  are observed 
only at temperatures below 32 ~ 

At higher temperature, simultaneous changes with temperature 
of the parameters ~b~:, 3 q5 ~ qS~jqSk, and w/kT are superimposed 
on this simple Arrhenius behavior, confirming and extending the 
earlier observations of a process of "high-temperature inactiva- 
tion" (Ernst & Adam, 1978). This process has been interpreted 
as due to K + transport molecules being more effective and/or 
residing preferentially in the cholesterol-rich and/or quasi-crystal- 
line regions of a heterogeneous plasma membrane, which upon 
rising temperature above 32 ~ diminish greatly by redistribution 
of cholesterol between laterally coexisting phases in the membrane 
(Ernst & Adam, 1978; Adam et al., 1979). This interpretation is 
consistent with detailed experimental results on analogous phenom- 
ena of high-temperature inactivation observed for channel-forming 
antibiotics in artificial lipid bilayer membranes (De Kruijff, Gerrit- 
sen, Oerlemans, van Dijck, Demel & van Deenen, 1974; Boheim~ 
Hanke & Eibl, 1980). Such a change with temperature of the physi- 
cal state of the plasma membrane of 3T3 cells at fixed external 
Ca ~ + concentration, e.g. lateral redistribution of chiolesterol and/ 
or K+-transport molecules between different coexisting phases, 
may well result in a higher fraction of K+-transport molecules 
participating in the Ca z +-induced change of external surface poten- 
tial and/or experiencing a higher surface-charge density in the liquid 
crystalline regions of the membrane, as is consistent with our data 
on variation of E ~ with temperature. 

The following indirect evidence points to (pairs 
of) negatively charged phosphol ipids  as the molecular  
entities binding Ca e + ions and thereby governing the 
external surface charge density near the passive K+-  
t ranspor t  mediat ing structures in the membrane.  

0 Phosphat idyl  serine (PS) and phosphat idyI  ino- 
sitol (PI) are the p redominan t  negatively charged 
phosphotipids in the plasma membrane ,  amount ing  
to a molar  fraction of  0.09 o f  the total p lasma-mem- 
brane lipids of  SV40-3T3 cells (Perkins & Scott,  1978). 
Since the cross-sectional area of  cholesterol is roughly 
that  of  a phospholipid,  which approximately  may be 
given as 0.7 nm 2, the average membrane-surface  area 
per pair o f  negatively charged lipids is 2 x 0.7 nm2/  
0 .09=  1.55.10-17 m 2, which compares  well with the 
figures given in Table 4 for the average area per Ca 2 +- 
binding site o f  t ransformed cells. 

However,  this agreement  between density of  Ca 2 *- 
binding sites and density of  (pairs of) negatively 
charged phospholipid molecules does no t  extend to 
the case o f  3T3 cells at saturat ion density (Perkins & 
Scott, 1978). This discrepancy might  result f rom the 
prevalence in the cell membrane  of  3T3 cells at high 

growth densities of  di- and tr iphospho-inosit ides (cf. 
Hendricksen & Reinertsen, 1971 ; Michell, 1975). 

i/) I f  negatively charged phospholipids are the per- 
t inent Ca 2 +-binding sites of  the model ,  the interaction 
terms contr ibut ing to w I should partly result f rom 
selective interactions of  the hydroca rbon  chains of  
negatively charged lipids and those of  amphiphil ic 
phospholipids and/or  cholesterol. A striking indica- 
tion of  such nonelectrostat ic contr ibutions to the neg- 
ative figures of  w' is the observat ion of  a great prepon-  
derance o f  saturated hyd roca rbon  chains C t s : o  for  
phosphat idyl  serine and phosphat idyl  inositol of  nor-  
mal and SV40-transformed 3T3 cells as compared  
to the amphiphilic phospholipids having most ly  short  
(C16:o) or unsaturated (18:1) hydroca rbon  chains 
(Perkins & Scott, 1978). 

Virtually the same observation was made for plasma mem- 
branes of hepatocytes and different hepatoma (Van Hoeven, Em- 
melot, Krol & Oomen-Meulemans, 1975). Furthermore, an analo- 
gous observation was made for phosphatidyl inositol in the plasma 
membrane of BHK cells, where separate information on hydrocar- 
bon-chain saturation of phosphatidyl serine is not given (Micklem, 
Abra, Knutton, Graham & Pasternak, 1976). 

This apparent ly  general feature o f  p redominan t  
saturation o f  the fatty-acid chains o f  the negatively 
charged lipids should favor their lateral aggregation 
once the repulsive interaction of  the net negative 
charge of  the lipids is compensated  by Ca 2 + binding, 
the latter thus being rendered positively cooperat ive 
( w ' <  w < 0). These arguments  seem to apply afortiori 
to interactions of  negatively charged phospholipids 
with the p redominan t  lipid in the plasma membrane :  
cholesterol. 

In the case of high Car the complexes of negatively charged 
lipids and Ca 2 + may he expected to separate from the cholesterol- 
containing membrane areas. In any ease, studies on binary mixtures 
of acidic and neutral phospholipids do not appear to give represen- 
tative models of Ca 2+-induced phase separations in mammalian 
plasma membranes, if such a differentiation of saturation of the 
corresponding fatty acid chains and/or the effect of cholesterol 
is not taken into account. 

iii) Multiple studies on lipid model  systems have 
given ample evidence for the existence of  Ca 2~-in- 
duced phase transitions in suspensions of  negatively 
charged phospholipids (Papahadjopoulos ,  1968; 
TrS, uble & Eibl, 1974; Hause,  Darke  & Finer, 1976) 
and, more  pertinent for the present discussion, of  
Ca 2 +-induced phase separations in mixtures o f  acidic 
and neutral  phospholipids (Ohnishi & Ito, 1973, 1974; 
Papahadjopoulos ,  Poste, Schaeffer & Vail, 1974; Ja- 
cobson & Papahadjopoulos ,  1975; Papahadjopoulos ,  
Vail, Newton,  Nir, Jacobson,  Poste & Lazo,  1977; 
van Dijck, de Kruijff, Verkleij, van Deenen & de Gier, 
1978). Accord ing  to this latter group of  investigators, 
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"the Ca 2 +-bound negatively charged lipid forms rigid 
domains embedded in the otherwise liquid crystalline 
lipid" (Lee, 1977). The quantitative relations for co- 
operative Ca2+-binding given in the Appendix are 
consistent with such a lateral phase separation of neg- 
atively charged phospholipids. There are some strik- 
ingly parallel features observed for these binary lipid 
model systems and the Ca2+-dependent regulation 
process for passive K + transport: 1) The mol fraction 
of solid phase phosphatidyl serine in the presence 
of excess Ca 2+ is rather insensitive to temperature 
(Ito, Ohnishi, Ishinaga & Kito, 1975), which corre- 
sponds well with qS~ being largely independent 
of temperature in the case of transformed cells 
(Fig. 6); 2) the affinity of binding of Ca z + to the 
negatively charged lipids is considerably higher (about 
10 x) than that of Mg z+ (Ohnishi & Ito, 1974; New- 
ton, Pangborn, Nir & Papahadjopoulos, 1978); which 
corresponds to the effectivity of Ca 2 + for regulation 
of passive K § transport in hepatocytes being about 
14 times that of Mg 2 + (Kolb & Adam, 1976). 

iv) An interaction of Ca 2 + ions with neuraminic 
acids in the outer cell membrane as pertinent with 
regard to Ca 2 + regulation of ~bK appears very improb- 
able from the following experiments. Passive K + 
transport in 3T3 and SV40-3T3 cells was not affected 
by treatment with neuraminidase (Adam et al., 1979) 
at concentrations that modify cell-surface charge 
(Adam & Adam, 1975). In full consistence with the 
conclusions from the present work, cell growth could 
also not be affected by application of neuraminidase 
to the growth medium (Adam, unpublished results). 

The theoretical analysis presented above is, there- 
fore, entirely consistent with a cooperative binding 
of Ca 2+ ions to, and a concomitant lateral molecular 
redistribution of, negatively charged lipids in the 
liquid crystalline phase of transformed 3T3 cells, the 
amount of this liquid crystalline phase in the plasma 
membrane being independent of temperature, which 
appears a reasonable assumption at least for T< 37 ~ 
In the case of 3T3 cells, the situation is more complicat- 
ed, since a temperature-dependent change in the outer 
cell membrane appears superimposed on the Ca 2+- 
dependent regulation process. Clearly, further evi- 
dence is needed in order to be able to exclude the 
possibility of regulation of ~bK by interaction of Ca 2 + 
with nonphospholipid molecular entities in the plas- 
ma membrane, such as membrane proteins or glycoli- 
pids. 
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A p p e n d i x  

Theoretical Formulation of a Molecular Model 
for Regulation of CK 

Regulation of passive K + transport by external Ca 2+ concen- 
tration has been described as governed by cooperative binding of 
Ca 2+ to negatively charged sites of the plasma membrane  (Adam, 
1967, 1968, 1970; Kolb & Adam, 1976). In our previous formu- 
lation of the model, however, the dependence of the passive K + 
flux on the (binding) state of the membrane  was not  derived from 
a specific model, but  simply taken as a linear relation. 

In order to be more specific on this aspect, passive K + efflux 
CK is described by the constant field equation allowing for surface 
potentials E e and E i at the outer and inner faces of the plasma 
membrane,  respectively (Kolb & Adam,  1976; Adam, L~iuger & 
Stark, 1977): 

U FEi FEe 
(aK=PK ~ ( K ~ e - ~ T - - K e e  ~g e-U). (A1) 

Here, PK is the intrinsic membrane  permeability, K~ and K~ are 
external and internal (bulk) concentrations of K +, respectiveIy. 
The reduced difference u of electrical potential between inner and 
outer face of the membrane  is given by 

F 
u=--(v~+E~-~ ). (A2) 

RT " ~" 

where V m is the eiectric membrane  potential difference determined 
by the electric potentials in the bulk electrolyte phases. 

Since in our experiments K e ~ Ki and - V M < 30 mV (Adam et 
al., 1979), we may use K~exp{-FV~/RT}/K~I,  and therefore 
obtain: 

U 
CK = C t~.  e '~' (A 3) 

where 

{ FEI } (A4) C = P C K i e x p  - ~  . 

If lu141, the series expansion of e " in Eq. (A3) yields: 

(1 ~bK~ C . (A5) 

In the following, we shall assume that PK and E i do not depend 
on the external Ca z+ concentration. Since according to our ex- 
perimental procedure K~ is independent of Ca~, and therefore the 
same appIies to C, any dependence of ~b K on C G derives from u, 
in particular through E~. For small surface potentials, we may use 
the approximation 

Ee- a l D (A6) 
8o 

where or=cell surface charge density (at the sites of passive K + 
transport), 1D = Debye length, e = relative dielectric constant  and G 
= permittivity of vacuum. 

The dependence of a on Ca e will be described by the follow- 
ing minimal model (a more detailed theoretical formulation re- 
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moving most of the restrictions of the present model will be pub- 
lished elsewhere). 

The surface charge a is considered to consist of negatively 
charged groups which (after lateral redistribution) cooperatively 
bind Ca 2+ ions. In the most simple case, one Ca 2+ ion is bound 
by a pair of negative charges (viz. two negatively charged phos- 
pholipids), which is referred to as a "Ca2+-binding site". The 
intrinsic binding affinity of alkali ions to the negatively charged 
groups is considered to be negligible (Eisenberg, Gresalfi, Riccio 
& McLaughlin, 1979). Furthermore, 1:1 binding of Ca 2+ per 
charged group is expected to occur only after saturation of the 
2:1 binding and will be neglected in the following. If n and 1 - n  
are the fractions of vacant sites and sites occupied by a Ca 2§ ion, 
respectively, the cell surface charge density a may be written: 

a=aon (A7) 

where a o is the surface charge density without any binding of 
Ca 2+ to the sites. 

Using Eqs. (A2) and (A3) (A7), we have: 

q~K= C [1 +2R@ / g~ \ ]  ~V~+E,-~%o n)]. (A8) 

Cooperative binding of Ca 2+ ions to a two-dimensional assembly 
of binding sites has been formulated in the molecular field ap- 
proximation (Adam, 1967, 1968, 1970; Kolb & Adam, 1976) as: 

w ,  
n e kr =-O~ (A9) 

1 - n Ca e 

where Ca e is the electrochemical activity of Ca 2+ ions near the 
binding sites on the membrane surface: 

f 2F<~ 
(~ae : Ca e exp) - ~ - ;  (A10) 

and w ' < 0  the cooperativity parameter of Ca" binding whereas Q 
describes the affinity of the binding sites for Ca 2+. 

Clearly, the formulation of Eq.(A9) gives only a crude ap- 
proximation of the statistical problem in the case of laterally re- 
distributing negatively charged membrane molecules (viz. acidic 
phospholipids) in an excess of neutral membrane constituents (viz. 
amphiphilic phospholids and cholesterol). 

The result of a more detailed derivation of the partition func- 
tion in the molecular feld approximation for a two-dimensional 
system of three species of membrane subunits (neutral, vacant ne- 
gatively charged and bound negatively charged, i.e. pairwise oc- 
cupied by a Ca 2§ ion) can be approximated as (Adam, to be pub- 
lished elsewhere): 

v 2 o',. Q' 
- -  e k r  = ~ .  ( A  1 1 )  
1 - v Ca e 

Here, v is the vacant fraction of negatively charged subunits, 
whereas v '<0  and Q' are parameters depending on the ratio of 
negatively charged sites to neutral sites and on interaction param- 
eters. Although E q . (A l l )  is not symmetrical if v is plotted vs. 
logCae, its deviations from Eq.(Ag) are inconsequential for the 
present purposes, so that the discussion of the present data will be 
based on Eq.(A9). Observing that E e depends on n by Eqs.(A6) 
and (A7), we may write: 

E o = E ~ n (A 12) 

E o ao ID = (A 13) 
8 0 8  

and thus recast Eqs. (A8) and (A10) into Eq. (4), where 

w = w ' -  2eo E~ (A14) 

where e o is the elementary charge. 
According to Eq.(Ag), n approaches 0 or 1 if Ca e is very 

large or very small, respectively. If the membrane potential V M is 
independent of Ca e, we obtain from Eq. (A8): 

~ _  [ F ] 
4)K--C I +2RT(VM+E~) (A15) 

o F 
OK = C [I + 2R T (VM + EI - E~ (A16) 

I 

(A17) 
Furthermore, Eqs. (A8) and (A 13) yield Eq. (3) if: 

A4~ - C rE~  (A18) 
2RT 

Lastly, we wish to evaluate the temperature dependence of 
the parameter Q. Eq.(3) may be written in a more symmetrical 
form. Defining an intrinsic affinity q of the negatively charged 
binding sites for Ca 2 + by 

Q=qe w'2kr (A19) 

we obtain 

/2 w (1 2n) q 
e 2kr = - - .  (A20) 

l - -  n Cae 

Here, q indicates the external Ca 2+ concentration for half-maxi- 
mal saturation of the cation-binding sites. 
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